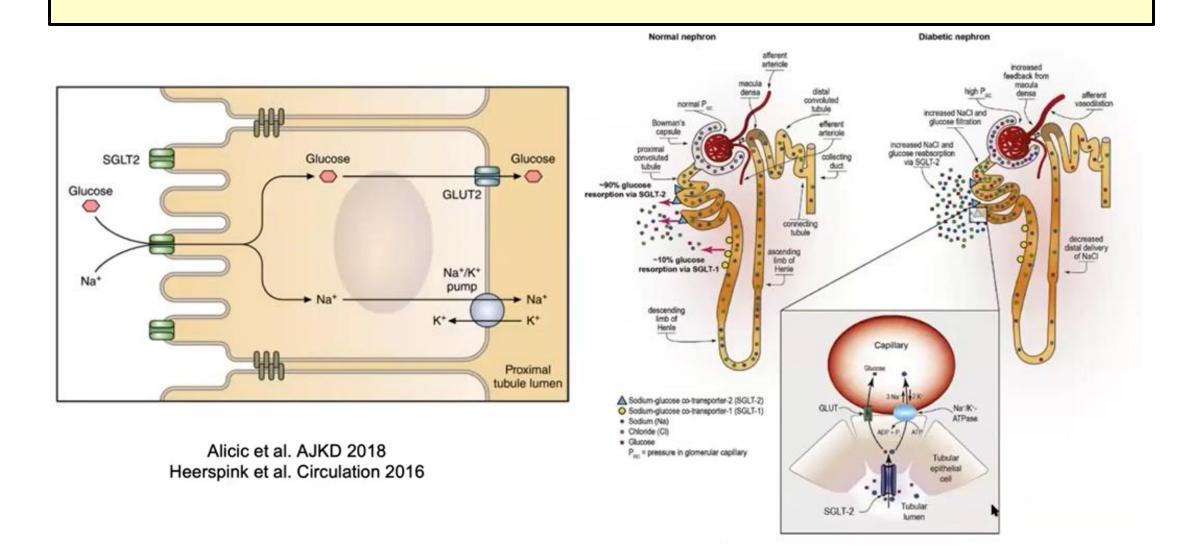

# Visie van de nefroloog

Prof. Dr. M. Speeckaert

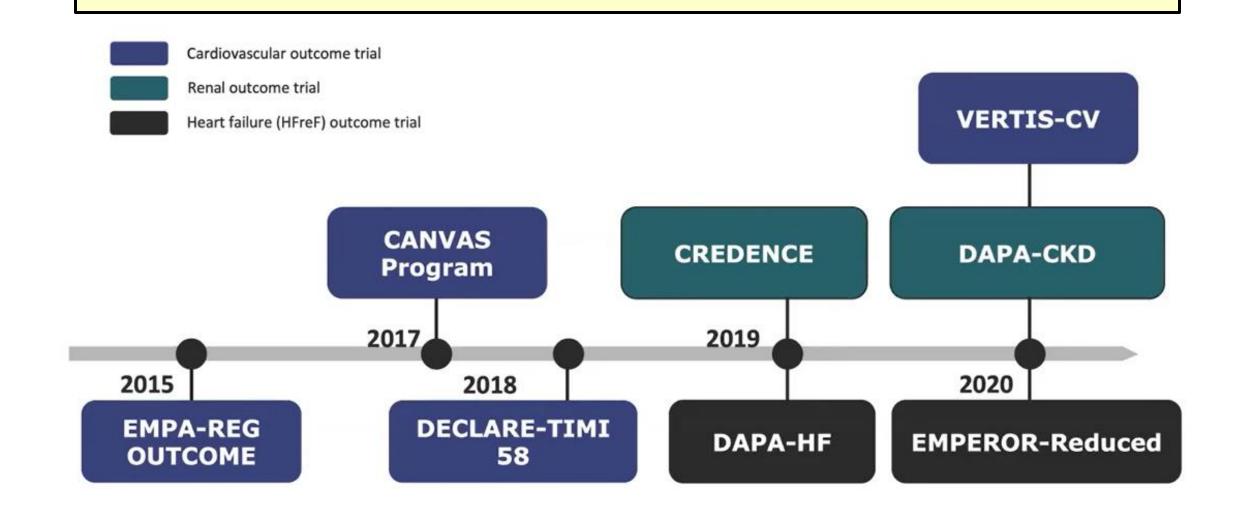



## **CLINICAL TRIALS OF NEW DIABETIC DRUGS**




# SUMMARY OF THE MAIN EFFECTS OF THE NEW DIABETIC DRUGS

|                               |                                                                                             | Cardiovascular o                               | effects       | Kidney effects                                                |              |                                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|---------------|---------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------|
| Drug                          | HbA <sub>1c</sub> lowering                                                                  | Major atherosclerotic<br>cardiovascular events | Heart failure | Albuminuria or<br>albuminuria-containing<br>composite outcome | GFR<br>loss* | Notable adverse<br>effects                                                                          |
| SGLT2<br>inhibitors           | ↓ 0.6–0.9%<br>(CKD G1–G2)<br>↓ 0.3–0.5%<br>(CKD G3a)<br>↔<br>(CKD G3b–G4)<br>NA<br>(CKD G5) | ↓/ <b>-</b>                                    | ¥ ¥           | <b>↓</b> ↓                                                    | 11           | Genital mycotic<br>infections, diabetic<br>ketoacidosis,<br>possibly amputations<br>(canagliflozin) |
| GLP-1<br>receptor<br>agonists | ↓ 1.0–1.2%<br>(CKD G3a–4)                                                                   | ↓ <i>/</i>                                     | -             | ł                                                             | ļ <i>/</i>   | Gastrointestinal,<br>primarily nausea<br>and vomiting                                               |
| DPP-4<br>inhibitors           | ↓ 0.5–0.7%<br>(CKD G3a–4)                                                                   | -                                              | -/1           | ţ                                                             | -            | Possibly heart failure (saxagliptin)                                                                |


# SGLT2 INHIBITORS



# MECHANISMS OF RENAL (AND CV) BENEFIT

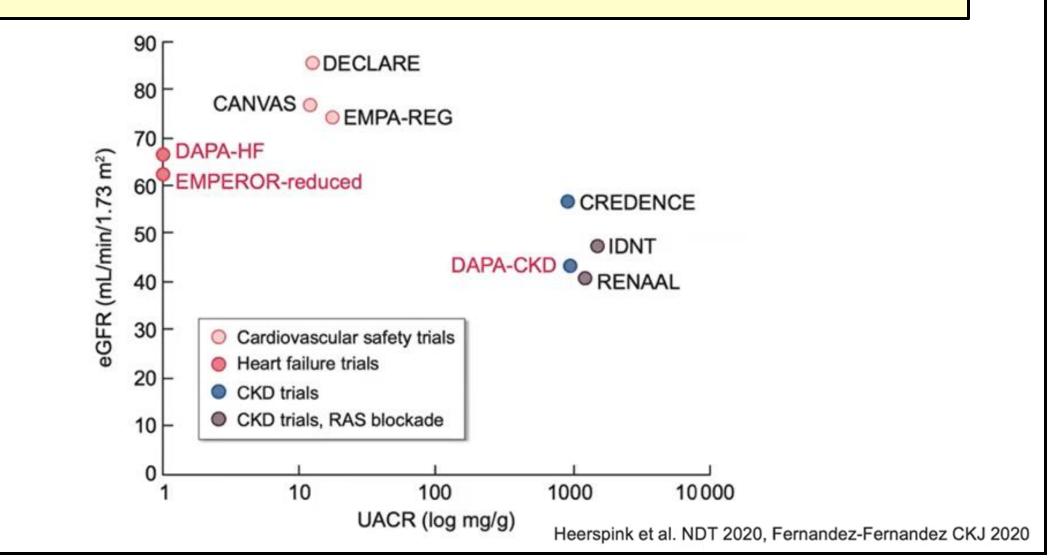


# KEY SGLT2 INHIBITOR TRIALS: 2015-2020

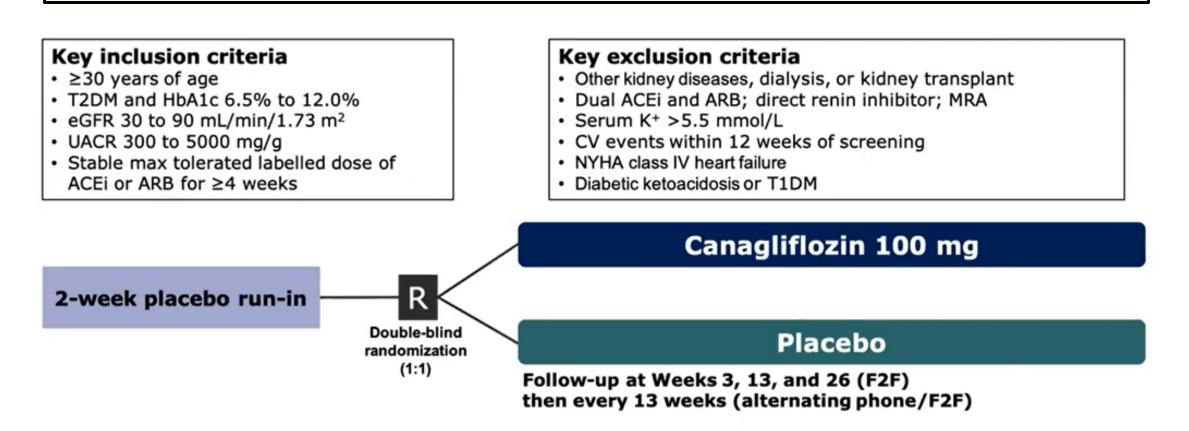


# PARTICIPANT CHARACTERISTICS IN THE KEY SGLT2 INHIBITOR TRIALS

| Study                                      | EMPA-REG<br>OUTCOME<br>(n=7020) | CANVAS Program<br>(n=10142) | DECLARE-TIMI 58<br>(n=17160) | CREDENCE<br>(n=4401) | DAPA-CKD<br>(n=4304) |
|--------------------------------------------|---------------------------------|-----------------------------|------------------------------|----------------------|----------------------|
| Drug                                       | Empagliflozin                   | Canagliflozin               | Dapagliflozin                | Canagliflozin        | Dapagliflozin        |
| Mean age (years)                           | 61                              | 63                          | 64                           | 63                   | 62                   |
| Female, n (%)                              | 2004 (29)                       | 3633 (36)                   | 6422 (37)                    | 1494 (34)            | 1425 (33)            |
| Median follow-up (years)                   | 3.1                             | 2.4                         | 4.2                          | 2.6                  | 2.4                  |
| Established atherosclerotic CV disease (%) | 7020 (100)                      | 6656 (66)                   | (6974 (41)                   | 2220 (50)            | 1610 (37)            |
| History of heart failure, n (%)            | 706 (10)                        | 1461 (14)                   | 1724 (10)                    | 652 (15)             | 468 (12)             |
| Diabetes, n (%)                            | 7020 (100)                      | 10142 (100)                 | 17160 (100)                  | 4401 (100)           | 2906 (68)            |
| eGFR, mL/min/1·73m², (mean)                | 74                              | 76                          | 85                           | 56                   | 43                   |
| eGFR <60mL/min/1·73m², n (%)               | 1819 (26)                       | 2039 (20)                   | 1265 (7)                     | 2592 (59)            | 3850 (89)            |
| UACR, mg/g, (median)                       | 18                              | 12                          | 13                           | 927                  | 949                  |
| UACR >300 mg/g, n (%)                      | 764 (11)                        | 760 (7)                     | 1169 (7)                     | 4401 (100)           | 3859 (90)            |
| Baseline use of RAS blockade, n (%)        | 5666 (81)                       | 8116 (80)                   | 13950 (81)                   | 4395 (>99)           | 4174 (97)            |


# BASELINE KIDNEY RISK IN THE KEY SGLT2 INHIBITOR TRIALS

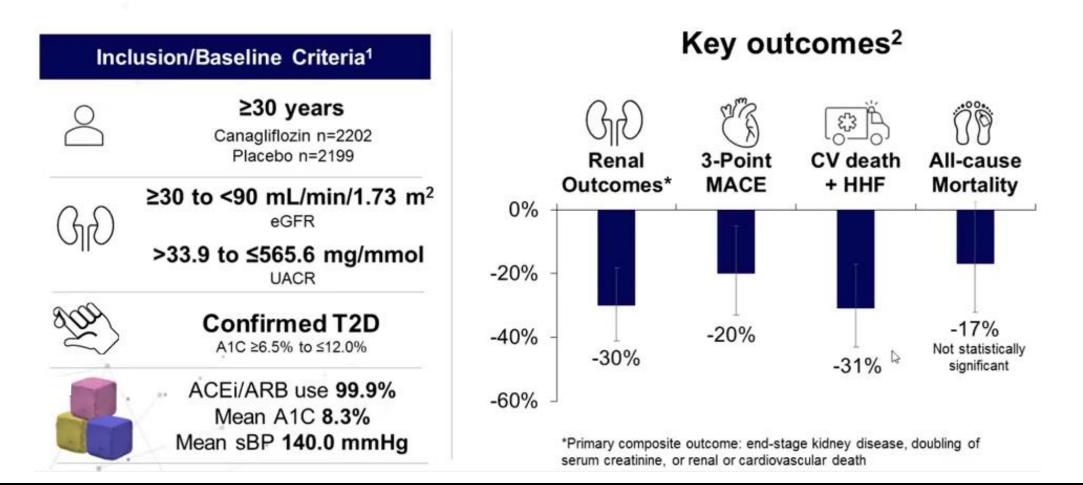
|                         |          |       | Albuminu         | ria stages, description a           | and range |                                                                  |                  |                     |
|-------------------------|----------|-------|------------------|-------------------------------------|-----------|------------------------------------------------------------------|------------------|---------------------|
|                         |          |       | A1               | A2                                  | A3        |                                                                  |                  |                     |
|                         |          |       | Normoalbuminuria | a Microalbuminuria Macroalbuminuria |           | Microalbuminuria Macroalbuminuria                                | Macroalbuminuria | CREDENCE (DKD only) |
|                         |          |       | <30 mg/g         | 30300 mg/g                          | >300 mg/g | eGFR ≥30 to <90 mL/min/1.73 m <sup>2</sup><br>and UACR ≥300 mg/g |                  |                     |
| 3 m <sup>-</sup> )      | Stage 1  | ≥90   |                  |                                     |           |                                                                  |                  |                     |
| categories (mL/min/1./3 | Stage 2  | 60-89 | ECD              | g**                                 |           | DAPA-CKD (CKD)<br>eGFR ≥25 to <75 mL/min/1.73 m <sup>2</sup>     |                  |                     |
|                         | Stage 3a | 45–59 |                  |                                     |           | and UACR ≥200 mg/g                                               |                  |                     |
| ) sauce                 | Stage 3b | 30–44 |                  |                                     |           | EMPA-KIDNEY (CKD)                                                |                  |                     |
| Calley                  | Stage 4  | 15–29 |                  |                                     |           | eGFR ≥45 to <75 mL/min/1.73 m <sup>2</sup><br>and UACR ≥200 mg/g |                  |                     |
|                         | ESKD 5   | <15   |                  |                                     |           | OR<br>eGFR ≥20 to <45 mL/min/1.73 m <sup>2</sup>                 |                  |                     |


E=EMPA-REG OUTCOME; C=CANVAS; D=DECLARE-TIMI 58

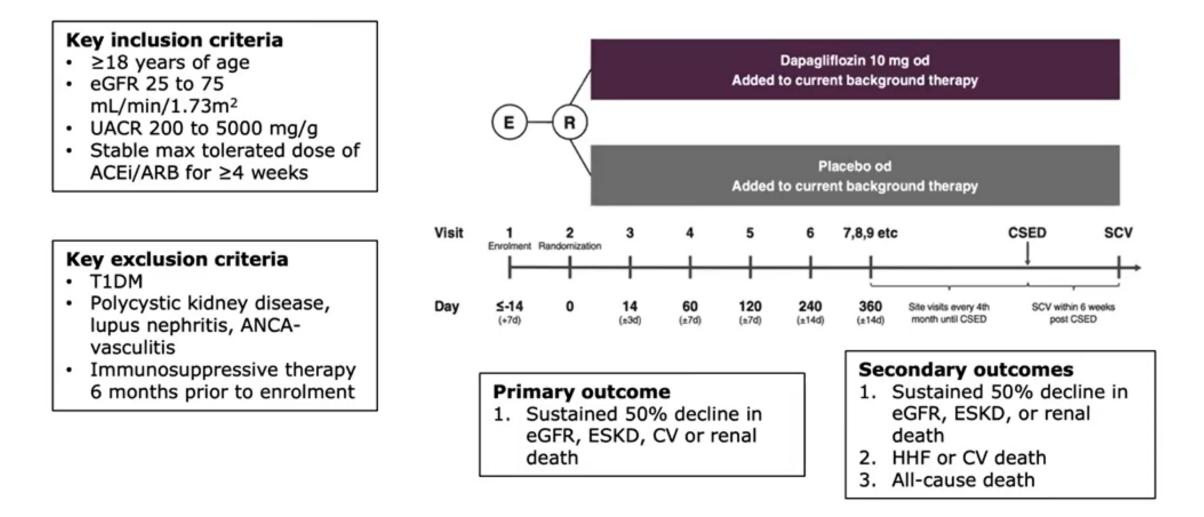
Heerspink et al. NDT 2020, Fernandez-Fernandez CKJ 2020

## BASELINE KIDNEY RISK IN THE KEY SGLT2 INHIBITOR TRIALS



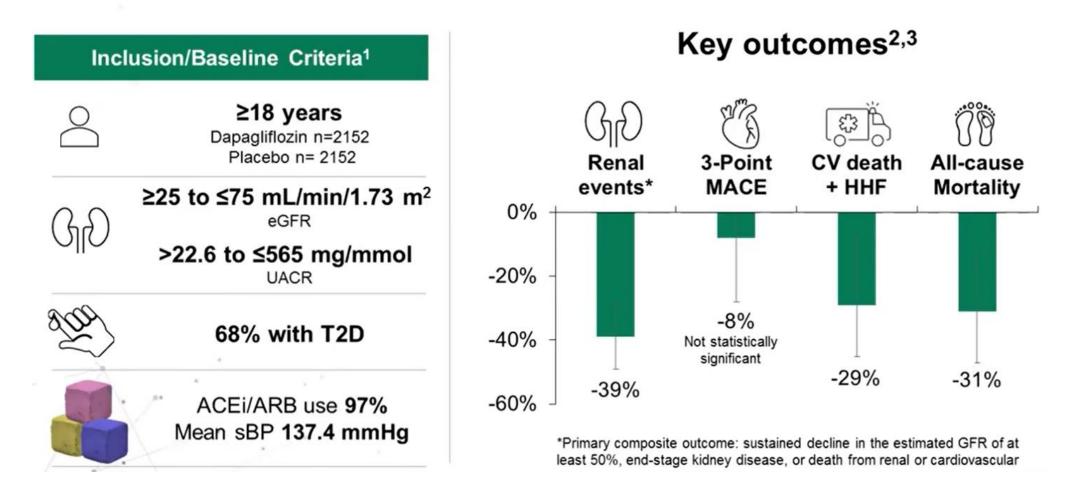

# **CREDENCE DESIGN**



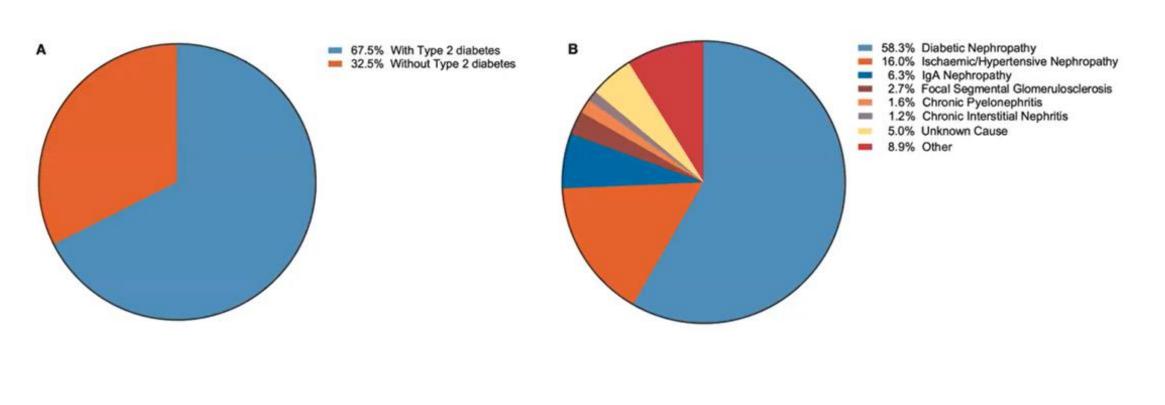

Participants continued treatment if eGFR was <30 mL/min/1.73 m<sup>2</sup> until chronic dialysis was initiated or kidney transplant occurred.

## CREDENCETRIAL

Canagliflozin 100 mg



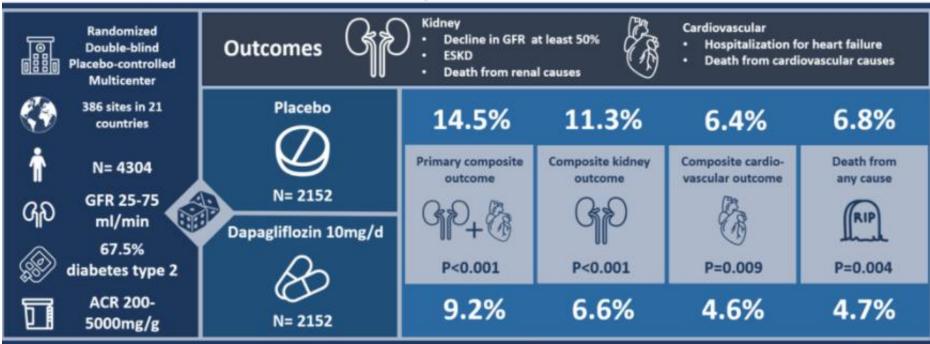

# **DAPA-CKD: STUDY DESIGN**




## DAPA-CKD TRIAL

Dapagliflozin 10 mg




# DAPA-CKD: ETIOLOGY OF CKD



Wheeler et al. NDT 2020

# DAPA-CKD: ETIOLOGY OF CKD

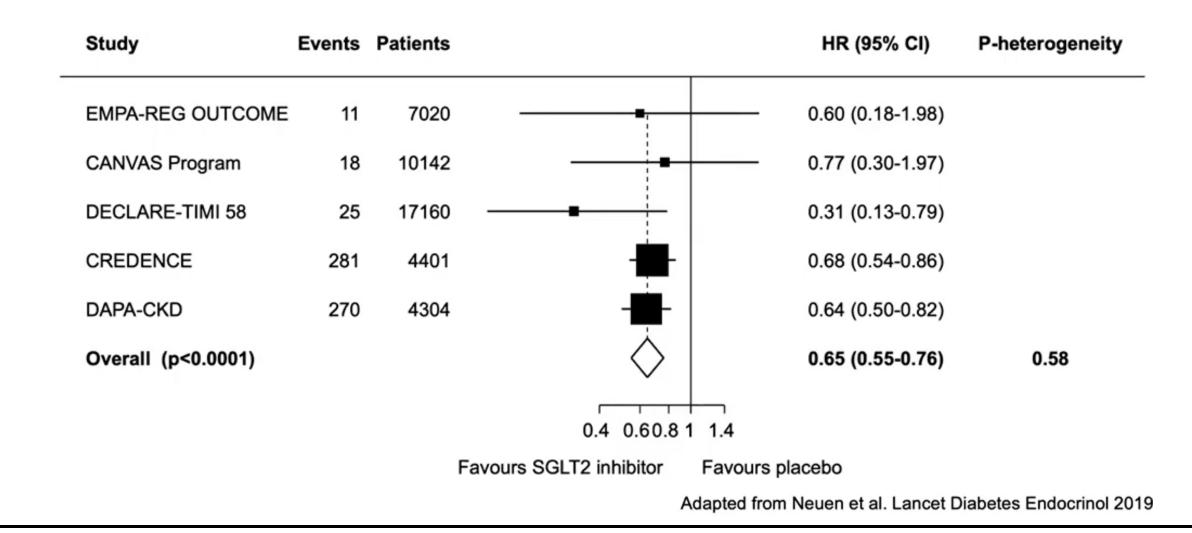
# Could dapagliflozin improve kidney and cardiovascular outcomes in patients with CKD?



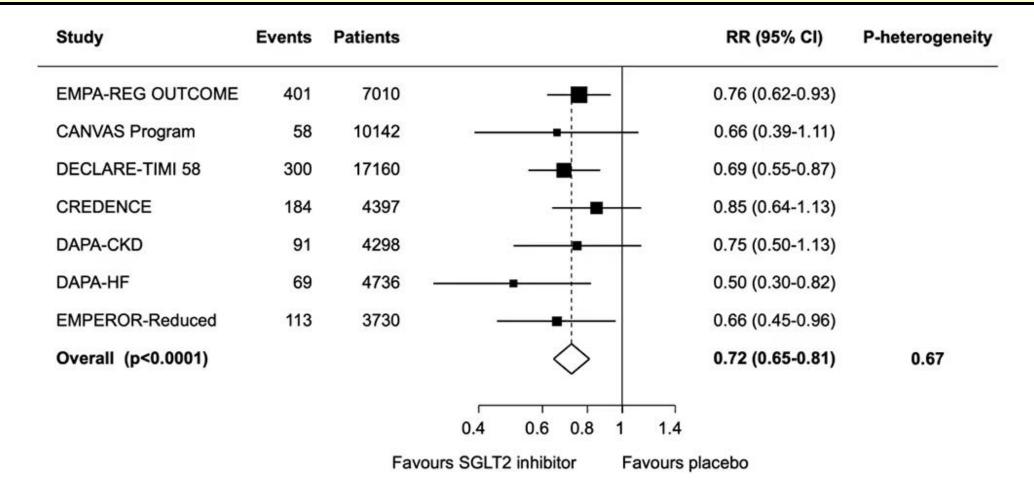
**Conclusion:** Among patients with chronic kidney disease, the risk of any composite kidney or cardiovascular outcomes or death was significantly lower with dapagliflozin than with placebo.

Reference:Heerspink HJL et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020 Sep 24. DOI: 10.1056/NEJMoa2024816.




#NephJC

Visual abstract: Denisse Arellano, MD 🔰 @deniise\_am


# DAPA-CKD: SAFETY RESULTS

| Safety outcomes, n (%)                    | Dapagliflozin<br>N=2149 | Placebo<br>N=2149 |
|-------------------------------------------|-------------------------|-------------------|
| Discontinuation of study drug             | 274 (12.8)              | 309 (14.4)        |
| Discontinuation due to adverse event      | 118 (5.5)               | 123 (5.7)         |
| Any serious adverse event                 | 633 (29.5)              | 729 (33.9)        |
| Adverse events of interest                |                         |                   |
| Amputation                                | 35 (1.6)                | 39 (1.8)          |
| DKA                                       | 0                       | 2 (0.1)           |
| Fracture                                  | 85 (4.0)                | 69 (3.2)          |
| Renal-related adverse event               | 155 (7.2)               | 188 (8.7)         |
| Major hypoglycemia                        | 14 (0.7)                | 28 (1.3)          |
| Volume depletion                          | 127 (5.9)               | 90 (4.2)          |
| Serious adverse event of volume depletion | 22 (1.0)                | 18 (0.8)          |

## **EFFECT OF SGLT2 IN HIBITION OF KIDNEY FAILURE**



## **EFFECT OF SGLT2 INHIBITORS ON ACUTE KIDNEY INJURY**



Adapted from Neuen et al. Lancet Diabetes Endocrinol 2019

# SGLT2 INHIBITORS AND MAJOR KIDNEY OUTCOMES IN T2DM

| Outcome                                                                                       | Events | Patients |                      | RR (95% CI)      |
|-----------------------------------------------------------------------------------------------|--------|----------|----------------------|------------------|
| Dialysis, transplant or death due to kidney disease                                           | 252    | 38723    |                      | 0.67 (0.52-0.86) |
| ESKD                                                                                          | 335    | 38723    | <b>—</b>             | 0.65 (0.53-0.81) |
| Substantial loss of kidney function, ESKD or<br>death due to kidney disease                   | 967    | 38671    |                      | 0.58 (0.51-0.66) |
| Substantial loss of kidney function, ESKD or<br>death due to cardiovascular or kidney disease | 2323   | 38676    |                      | 0.71 (0.63-0.82) |
| Acute kidney injury                                                                           | 943    | 38684    |                      | 0.75 (0.66-0.85) |
|                                                                                               |        |          | 0.5 0.75 1           | 1.5              |
|                                                                                               |        | Favo     | ours SGLT2 inhibitor | Favours placebo  |

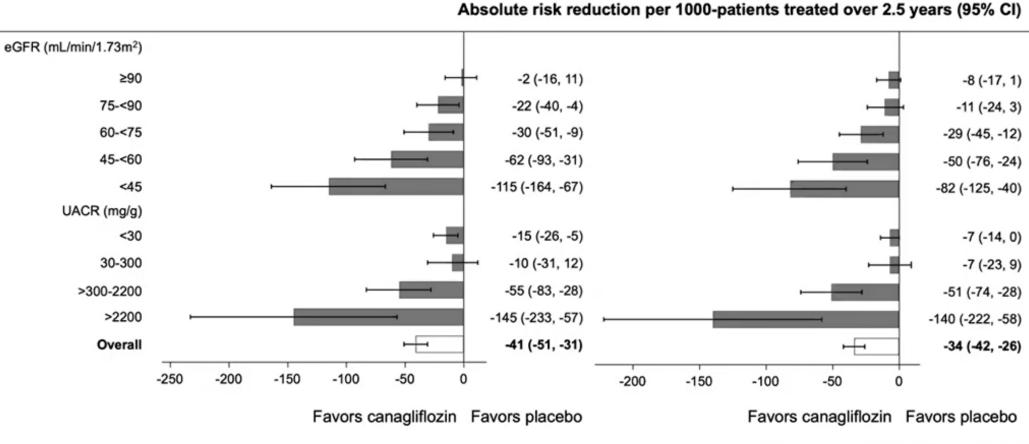
Adapted from Neuen et al. Lancet Diabetes Endocrinol 2019

# CARDIORENAL PROTECTION ACROSS THE FULL SPECTRUM OF EGFR/UACR: INTEGRATED DATA FROM CANVAS/CREDENCE

#### Heart failure, nonfatal MI, nonfatal stroke, doubling of serum creatinine, kidney failure, CV or renal death

|                                   | Canagliflozin | Placebo   |                     | Hazard ratio (95% CI) | P-trend        |
|-----------------------------------|---------------|-----------|---------------------|-----------------------|----------------|
| eGFR (mL/min/1.73m <sup>2</sup> ) |               |           |                     |                       | 0.0067         |
| ≥90                               | 172/2062      | 112/1545  |                     | 0.97 (0.76-1.23)      |                |
| 75-<90                            | 217/1897      | 177/1440  |                     | 0.81 (0.66-0.99)      |                |
| 60-<75                            | 237/1783      | 212/1458  | _ <b>_</b>          | 0.81 (0.67-0.98)      |                |
| 45-<60                            | 204/1310      | 240/1182  |                     | 0.71 (0.59-0.86)      |                |
| <45                               | 205/943       | 275/920   |                     | 0.66 (0.55-0.79)      |                |
| UACR (mg/g)                       |               |           |                     |                       | 0.057          |
| <30                               | 380/4028      | 292/3010  |                     | 0.81 (0.69-0.94)      |                |
| 30-300                            | 210/1573      | 149/1189  |                     | 0.92 (0.74-1.13)      |                |
| >300-2200                         | 294/1882      | 361/1799  |                     | 0.72 (0.62-0.84)      |                |
| >2200                             | 145/459       | 211/494   |                     | 0.69 (0.56-0.86)      |                |
| Overall                           | 1035/7997     | 1016/6546 | $\diamond$          | 0.77 (0.70-0.84)      |                |
|                                   |               |           | · · · · · ·         | r                     |                |
|                                   |               |           | 0.4 0.6 0.8 1.0 1.4 | 4                     |                |
|                                   |               | Favors    | canagliflozin Fa    | ivors placebo         |                |
|                                   |               |           |                     | Neuen et al           | . ASN Kidney W |

# HEART FAILURE RENAL COMPOSITE: INTEGRATED DATA FROM CANVAS/CREDENCE


|                                   | Canagliflozin | Placebo   |                     | Hazard ratio (95% CI) | P-trend |
|-----------------------------------|---------------|-----------|---------------------|-----------------------|---------|
| eGFR (mL/min/1.73m <sup>2</sup> ) |               |           |                     |                       | 0.41    |
| ≥90                               | 73/2062       | 61/1545   |                     | 0.74 (0.53-1.05)      |         |
| 75-<90                            | 123/1897      | 98/1440   | ֥+                  | 0.84 (0.64-1.10)      |         |
| 60-<75                            | 141/1783      | 146/1458  | - <b>•</b> -        | 0.71 (0.56-0.89)      |         |
| 45-<60                            | 151/1310      | 186/1182  | _ <b>_</b>          | 0.69 (0.55-0.86)      |         |
| <45                               | 176/943       | 227/920   | - <b>i</b> -        | 0.70 (0.58-0.86)      |         |
| UACR (mg/g)                       |               |           |                     |                       | 0.056   |
| <30                               | 185/4028      | 142/3010  |                     | 0.79 (0.63-0.99)      |         |
| 30-300                            | 129/1573      | 92/1189   |                     | 0.91 (0.69-1.19)      |         |
| >300-2200                         | 217/1882      | 287/1799  | -                   | 0.66 (0.56-0.79)      |         |
| >2200                             | 131/459       | 196/494   |                     | 0.67 (0.54-0.84)      |         |
| Overall                           | 664/7997      | 718/6546  | $\diamond$          | 0.72 (0.65-0.80)      |         |
|                                   |               |           | 0.4 0.6 0.8 1.0 1.4 |                       |         |
|                                   |               | Favors of | anagliflozin Fav    | ors placebo           |         |

Neuen et al. ASN Kidney Week 2020

# ABSOLUTE RISK REDUCTIONS ACROSS THE SPECTRUM OF eGFR/UACR: INTEGRATED DATA FROM CANVAS/CREDENCE

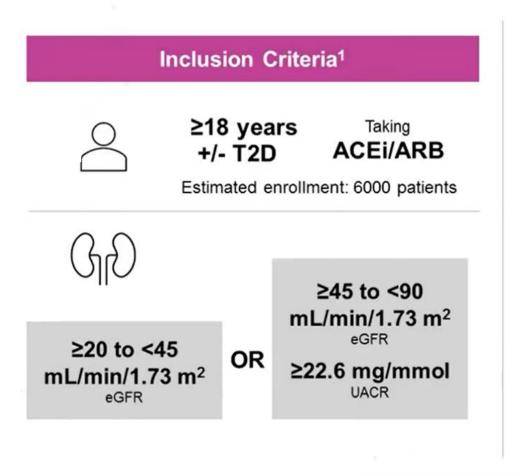
Primary cardiorenal composite outcome

Heart failure renal composite outcome



Neuen et al. ASN Kidney Week 2020

# SGLT2 INHIBITORS IN CKD: WHERE TO NEXT?


|                             |           |                 | Albuminu         | ria stages, description a | and range        |                                                                  |
|-----------------------------|-----------|-----------------|------------------|---------------------------|------------------|------------------------------------------------------------------|
|                             |           |                 | A1               | A2                        | A3               |                                                                  |
|                             |           |                 | Normoalbuminuria | Microalbuminuria          | Macroalbuminuria | CREDENCE (DKD only)                                              |
|                             |           |                 | <30 mg/g         | 30-300 mg/g               | >300 mg/g        | eGFR ≥30 to <90 mL/min/1.73 m <sup>2</sup><br>and UACR ≥300 mg/g |
| 3 m²)                       | Stage 1   | ≥90             | la sere al       |                           |                  |                                                                  |
| GFR categories (mL/min/1./3 | Stage 2   | Stage 2 60-89 E |                  |                           |                  | DAPA-CKD (CKD)<br>eGFR ≥25 to <75 mL/min/1.73 m <sup>2</sup>     |
|                             | Stage 3a  | 45–59           |                  |                           |                  | and UACR ≥200 mg/g                                               |
| ones (                      | Stage 3b  | 30-44           |                  |                           |                  | EMPA-KIDNEY (CKD)                                                |
| categ                       | Stage 4 1 | 15–29           |                  |                           |                  | eGFR ≥45 to <75 mL/min/1.73 m <sup>2</sup><br>and UACR ≥200 mg/g |
| GFH                         | ESKD 5    | <15             |                  |                           |                  | OR<br>eGFR ≥20 to <45 mL/min/1.73 m <sup>2</sup>                 |

E=EMPA-REG OUTCOME; C=CANVAS; D=DECLARE-TIMI 58

Heerspink et al. NDT 2020, Fernandez-Fernandez CKJ 2020

# **EMPA-KIDNEY**

#### Empagliflozin 10 mg





### Primary composite renal outcome\*

#### Key secondary endpoints:



Composite of CV death or HHF



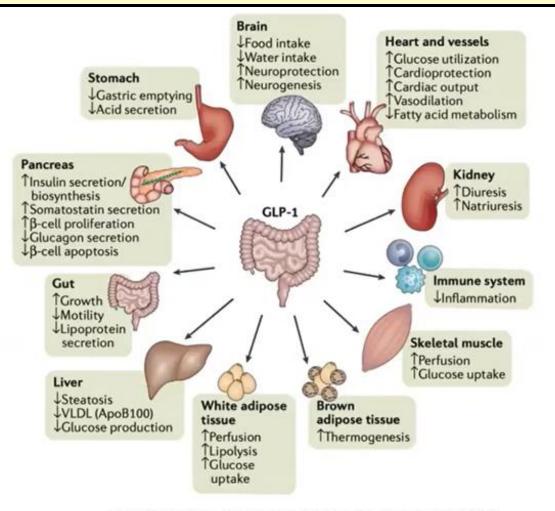
All-cause hospitalization

## All-cause mortality

\*Time to first occurrence of (i) kidney disease progression (defined as ESKD, a sustained decline in eGFR to <10 mL/min/1.73 m², renal death, or a sustained decline of ≥40% in eGFR from randomization) or (ii) Cardiovascular death

# EMPAGLIFLOZIN ACROSS DIFFERENT DKD PHENOTYPES

|                                     |           | Normal to mildly<br>increased | Moderately<br>increased | Severely<br>increased | Overt DKD<br>UACR > 300 mg/g                                                                              |  |
|-------------------------------------|-----------|-------------------------------|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|--|
|                                     | _         | <30                           | 30-300                  | >300                  | = with overt albuminuria                                                                                  |  |
| Normal or high                      | ≥90       | All ot                        | hers                    |                       | +                                                                                                         |  |
| Mildly decreased                    | sed 60-89 |                               | 893                     | Overt                 | 11% of patients in<br>EMPA-REG OUTCOME                                                                    |  |
| Mildly to moderately<br>decreased   | 45-59     | Non-ove                       | rt DKD                  | DKD<br>n = 769        | met these criteria                                                                                        |  |
| Moderately to<br>severely decreased | 30-44     | n = 1                         |                         |                       | Non-overt DKD<br>eGFR < 60ml/min/1.73m <sup>2</sup><br>and UACR ≤ 300 mg/g<br>= without overt albuminuria |  |
| Severely decreased                  | 15-29     |                               |                         |                       |                                                                                                           |  |
| Kidney failure                      | <15       |                               |                         |                       | 18% of patients in                                                                                        |  |


Wanner et al. Diabetes, Obesity and Metabolism 2020

# **EMPAGLIFLOZIN ACROSS DIFFERENT DKD PHENOTYPES**

| (C)                                                  | Empaglif  | lozin | Placeb    | 0    | Hazard ratio      | Hazard ratio |        |   | Interaction |
|------------------------------------------------------|-----------|-------|-----------|------|-------------------|--------------|--------|---|-------------|
|                                                      | n event/N | %     | n event/N | %    | (95% Ci)          | (95          | 5% CI) |   | P-value     |
| Incident or worsening nephropathy** or CV death      |           |       |           |      |                   |              |        | 1 |             |
| All patients                                         | 675/4170  | 16.2  | 497/2102  | 23.6 | 0.61 (0.55, 0.69) |              | -      |   |             |
| Overt DKD                                            | NA        | NA    | NA        | NA   | NC                |              | i      |   | 0710        |
| Non-overt DKD                                        | 190/831   | 22.9  | 149/432   | 34.5 | 0.57 (0.46, 0.71) |              |        | 6 | .3712       |
| All others                                           | 402/3223  | 12.5  | 285/1598  | 17.8 | 0.65 (0.56, 0.75) |              |        | • |             |
| Hard kidney endpoint <sup>†</sup> or CV death        |           |       |           |      |                   |              |        |   |             |
| All patients                                         | 201/4648  | 4.3   | 169/2325  | 7.3  | 0.57 (0.47, 0.70) |              | -      |   |             |
| Overt DKD                                            | 58/506    | 11.5  | 51/260    | 19.6 | 0.49 (0.34, 0.72) |              |        |   | 1500        |
| Non-overt DKD                                        | 52/839    | 6.2   | 33/439    | 7.5  | 0.81 (0.52, 1.25) |              | +      |   | .1582       |
| All others                                           | 89/3253   | 2.7   | 85/1610   | 5.3  | 0.50 (0.37, 0.68) |              | -      |   |             |
| Alternative kidney endpoint <sup>‡</sup> or CV death |           |       |           |      |                   |              |        |   |             |
| All patients                                         | 275/4648  | 5.9   | 216/2325  | 9.3  | 0.61 (0.51, 0.73) |              | -      |   |             |
| Overt DKD                                            | 90/506    | 17.8  | 68/260    | 26.2 | 0.56 (0.41, 0.77) |              |        | • | 4005        |
| Non-overt DKD                                        | 66/839    | 7.9   | 45/439    | 10.3 | 0.73 (0.50, 1.07) |              |        | - | .4265       |
| All others                                           | 116/3253  | 3.6   | 103/1610  | 6.4  | 0.54 (0.42, 0.71) |              | -      |   |             |

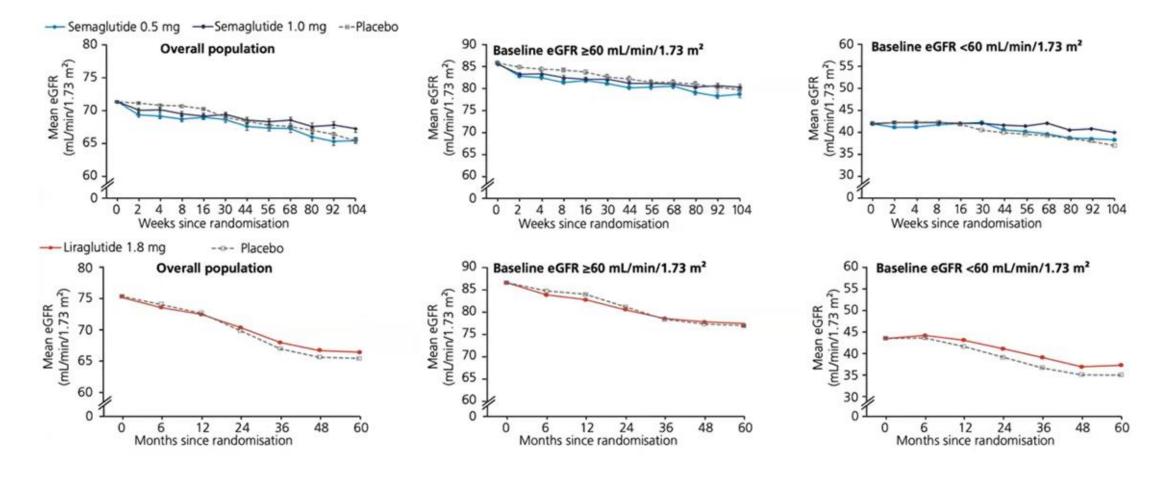
Wanner et al. Diabetes, Obesity and Metabolism 2020

## **GLP-1 RECEPTOR AGONISTS**



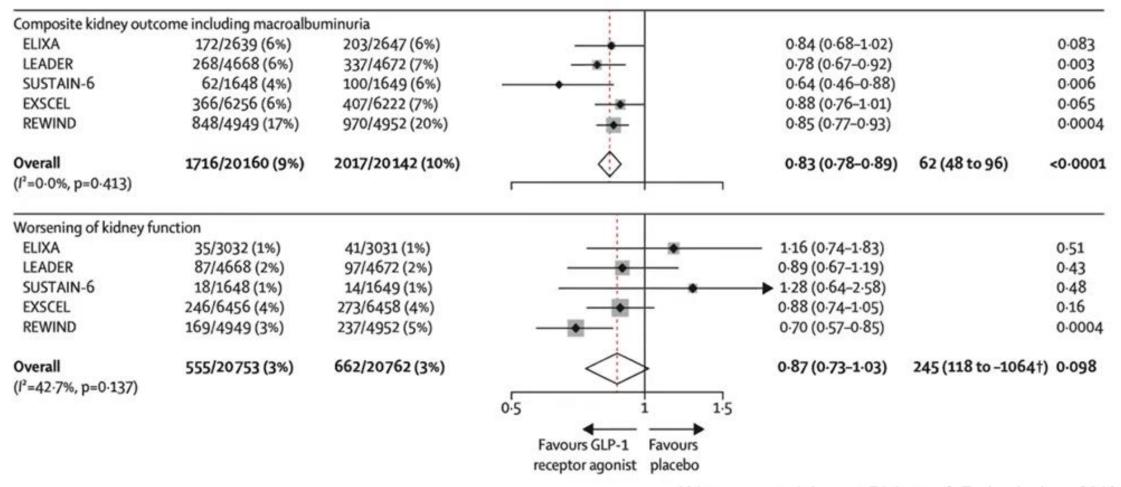
Muskiet et al. Nature Reviews Nephrology 2017

# GLP-1 RECEPTOR AGONISTS AND THE KIDNEY


# Direct effects:

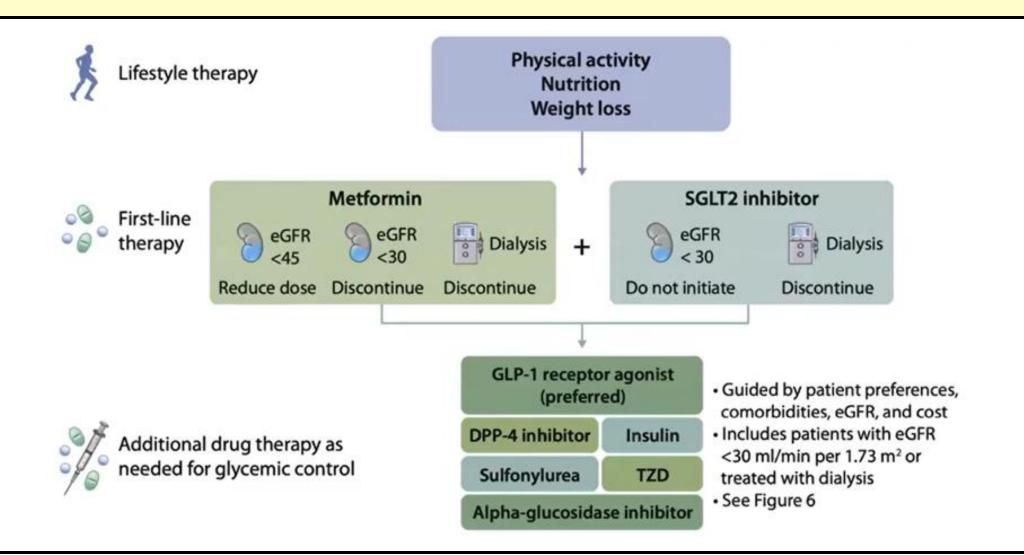
- Anti-inflammatory effects
- Reduced oxidative stress
- Increased natriuresis
- Inhibition of RAAS

# Indirect effects


- Improved glucose control
- Reductions in blood pressure
- Weight loss

## GLP-1 RECEPTOR AGONISTS AND eGFR DECLINE OVER TIME




Perkovic et al. EASD 2019

## **GLP-1 RECEPTOR AGONISTS AND KIDNEY OUTCOMES**



Kristensen et al. Lancet Diabetes & Endocrinology 2019

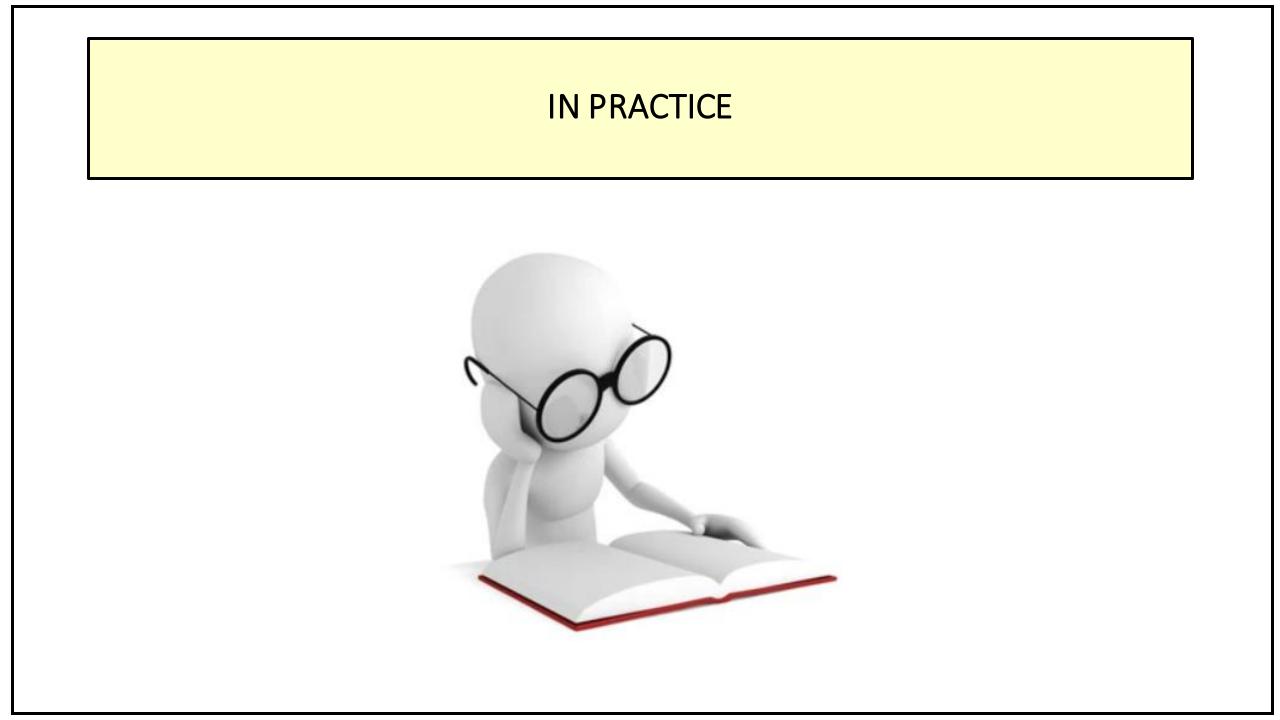
# **KDIGO GUIDELINES**



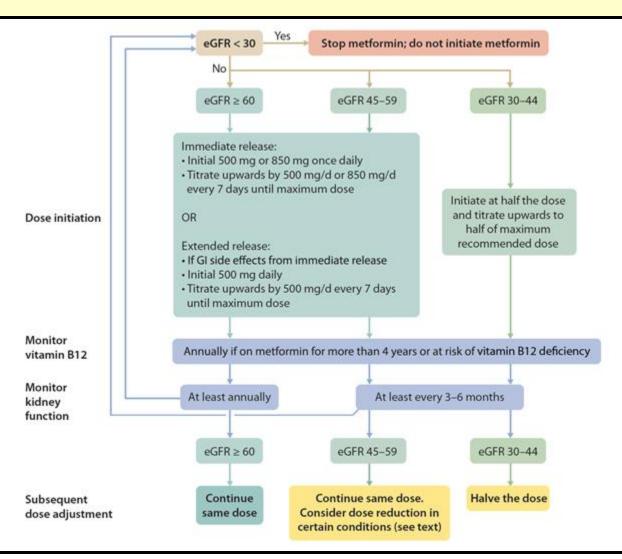
# **KDIGO GUIDELINES**

Recommendation 4.3.1. In patients with Type 2 diabetes and CKD who have not achieved individualized glycemic targets despite use of metformin SGLT2i, or who are unable to use those medications, we recommend a long acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) (1B).

# **FLOW TRIAL**


- Estimated enrollment: 3508 participants
- T2DM and CKD
  - eGFR 50-75 and UACR >300
  - eGFR 25-50 and UACR >100
- S/C semaglutide vs. placebo
- Primary outcome: sustained 50% decrease in eGFR, kidney failure, CV or renal death
- Completion expected in 2024

# FUTURE DIRECTIONS IN DKD


- Initiation of SGLT2i below starting eGFR 25 mL/min/1.73m<sup>2</sup>
- Trials in normoalbuminuric CKD
- Kidney transplant recipients (and other understudied populations)
- Combination treatment strategies (i.e. with GLP-1 receptor agonists and finerenone)
- Challenges of access and implementation to new therapies

# SUMMARY

- SGLT2 inhibition safely reduce the risk of kidney failure in people with CKD, including in those without diabetes
  - These benefits are coupled with substantial risk reductions for CV outcomes
  - Patients with more advanced CKD (lower eGFR and higher UACR) stand to gain the greatest net clinical benefit from treatment with these agents
- GLP-1 receptor agonists have favorable effects on composite renal outcomes driven by reductions in albuminuria, but effects on hard renal outcomes are uncertain
- Combined RAS blockade plus SGLT2 inhibition should be routinely offered to people with or at high risk of CKD, including those without diabetes



# SUGGESTED APPROACH IN DOSING METFORMIN BASED ON THE LEVEL OF KIDNEY FUNCTION



# SGLT2 INHIBITORS

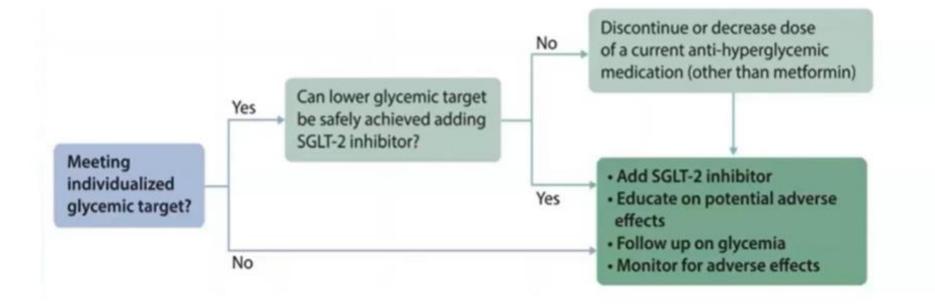
| SGLT2<br>inhibitor         | Dose                     | Kidney function eligible<br>for inclusion in pivotal<br>randomized trials                                                                                                                    | Dosing approved by the US FDA                                                                                                                                                                                                         |
|----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canagliflozin<br>Invokana  | 100–300 mg<br>once daily | CANVAS: eGFR $\geq$ 30 ml/min<br>per 1.73 m <sup>2</sup><br>CREDENCE: eGFR 30–90<br>ml/min per 1.73 m <sup>2</sup>                                                                           | No dose adjustment if eGFR >60 ml/min per 1.73 m <sup>2</sup><br>100 mg daily if eGFR 30–59 ml/min per 1.73 m <sup>2</sup><br>Avoid initiation with eGFR <30 ml/min per 1.73 m <sup>2</sup> ,<br>discontinue when initiating dialysis |
| Dapagliflozin<br>Forxiga   | 5–10 mg<br>once daily    | DECLARE-TIMI 58: CrCl $\geq$ 60 ml/min<br>DAPA-HF: eGFR $\geq$ 30 ml/min<br>per 1.73 m <sup>2</sup><br>DAPA-CKD: eGFR 25-75<br>ml/min per 1.73 m <sup>2</sup>                                | No dose adjustment if eGFR $\geq$ 45 ml/min per 1.73 m <sup>2</sup><br>Not recommended with eGFR <45 ml/min per 1.73 m <sup>2</sup><br>Contraindicated with eGFR <30 ml/min per 1.73 m <sup>2</sup>                                   |
| Empagliflozin<br>Jardiance | 10–25 mg<br>once daily   | EMPA-REG: eGFR $\geq$ 30 ml/min<br>per 1.73 m <sup>2</sup><br>EMPA-KIDNEY: eGFR 20–90<br>ml/min per 1.73 m <sup>2</sup><br>EMPEROR-Reduced: eGFR<br>$\geq$ 20 ml/min per 1.73 m <sup>2</sup> | No dose adjustment if eGFR ≥45 ml/min per 1.73 m <sup>2</sup><br>Avoid use, discontinue with eGFR persistently<br><45 ml/min per 1.73 m <sup>2</sup>                                                                                  |

# SITUATIE IN BELGIË

#### Albuminurie stadium: UACR (mg/g)

A1: A2: A3: <30 30-300 >300

|                                       | ≥ 90        |           | In label en reeds terugbetaald                                                                                               |
|---------------------------------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------|
|                                       | 60 tot < 90 |           |                                                                                                                              |
| eGFR<br>(ml/min/1.73 m <sup>2</sup> ) | 45 tot < 60 |           | Ook in label sinds 1 juli 2020 (EMA<br>approval) <sup>1</sup> ; nog geen TB                                                  |
|                                       | 30 tot < 45 | Official  |                                                                                                                              |
|                                       | < 30        | Off label | Ook in label sinds 1 juli 2020 (EMA<br>approval) <sup>1</sup> <u>voor verderzetting (</u> NIET voor<br>opstart); nog geen TB |


Invokana is geïndiceerd voor de behandeling van volwassenen met onvoldoende gereguleerde type 2-diabetes mellitus als aanvullend middel bij een dieet en lichaamsbeweging:

- als monotherapie wanneer metformine ongeschikt wordt geacht wegens intolerantie of contra-indicaties

- naast andere geneesmiddelen voor de behandeling van diabetes Voor onderzoeksresultaten met betrekking tot combinatie van behandelingen, effecten op bloedglucoseregulatie, cardiovasculaire en **renale voorvallen** en voor de onderzochte populaties, zie rubriek 4 en 5.1 van de SmPC<sup>1</sup>.

# MANAGING CONCOMITANT GLUCOSE LOWERING DRUGS

- Risk of hypoglycemia with SGLT2i is low
- In people achieving glycemic targets, reduction in insulin/discontinuation of other glucose lowering drugs is suggested to facilitate addition of an SGLT2i



# GLP-1 RECEPTOR AGONISTS

| GLP-1 RA                           | Dose                                  | CKD adjustment                                                           |
|------------------------------------|---------------------------------------|--------------------------------------------------------------------------|
| Dulaglutide<br>Trulicity           | 0.75 mg and 1.5 mg once weekly        | No dosage adjustment<br>Use with eGFR >15 ml/min per 1.73 m <sup>2</sup> |
| Exenatide Byetta                   | 10 µg twice daily                     | Use with CrCl >30 ml/min                                                 |
| Exenatide extended-release         | 2 mg once weekly                      | Use with CrCl >30 ml/min                                                 |
| Liraglutide Victoza                | 0.6 mg, 1.2 mg, and 1.8 mg once daily | No dosage adjustment<br>Limited data for severe CKD                      |
| Lixisenatide Lyxumia               | 10 μg and 20 μg once daily            | No dosage adjustment<br>Limited data for severe CKD                      |
| Semaglutide (injection)<br>Ozempic | 0.5 mg and 1 mg once weekly           | No dosage adjustment<br>Limited data for severe CKD                      |
| Semaglutide (oral)<br>Rybelsus     | 3 mg, 7 mg, or 14 mg daily            | No dosage adjustment<br>Limited data for severe CKD                      |

